Addition of clonidine or lignocaine to ropivacaine for supraclavicular brachial plexus block: a comparative study

Bhatia Rohan1, MBBS, MD, Payal Yashwant Singh1, MBBS, MD, Khurana Gurjeet1, MBBS, MD

INTRODUCTION Clonidine is used with local anaesthetics to improve analgesia. However, the improvement conferred when clonidine is used together with ropivacaine is controversial. Thus, the present study aimed to evaluate the improvement in analgesia when clonidine is used together with ropivacaine for supraclavicular brachial plexus block.

METHODS This was a prospective, randomised, double-blind controlled study. A total of 75 patients who were scheduled to undergo supraclavicular block were randomly assigned into three groups (i.e. clonidine, lignocaine and control groups) of 25. Patients in all three groups received 20 mL of 0.75% ropivacaine. In addition to that, patients in the clonidine group received 1 mL of clonidine (150 μg) plus 9 mL of saline, patients in the lignocaine group received 10 mL of 2% lignocaine with adrenaline (1:200,000), and patients in the control group received 10 mL of saline. The characteristics of anaesthesia and analgesia for these three groups were assessed.

RESULTS The addition of 2% lignocaine with adrenaline to ropivacaine led to earlier onset of the sensory block (by 4.88 mins), but no increase in the duration of analgesia when compared to analgesia using ropivacaine alone. The addition of clonidine to ropivacaine led to earlier onset of sensory and motor blocks (by 2.88 mins and 3.28 mins, respectively), as well as an increased duration of sensory and motor blocks (by 222.64 mins and 192.92 mins, respectively) when compared to analgesia using ropivacaine alone. The total duration of analgesia was increased by 208.24 mins with clonidine when compared to analgesia using ropivacaine alone. There were no significant differences in sedation score and no side effects in all three groups.

CONCLUSION When compared to the use of ropivacaine alone, the addition of 150 μg clonidine to ropivacaine for brachial plexus block achieved earlier analgesic onset and improved duration of analgesia, without unwanted side effects.

Keywords: anaesthetic technique, clonidine, duration of analgesia, ropivacaine, supraclavicular brachial plexus block
patients were then moved to the operating room, where their heart rate, respiratory rate, oxygen saturation and noninvasive blood pressure were monitored. The supraclavicular blocks were performed by an anaesthetist who was unaware of the composition of the local anaesthetic solution administered, as per the method described by Franco. A 22-gauge 50-mm needle (Stimuplex® A 50; B.Braun, Melsungen, Germany) connected to a nerve stimulator (NM-20®; INMED Equipments Pvt Ltd, Vadodara, India) was inserted at an initial current output of 1.0 mA, 0.1 ms and 2 Hz frequency, which was gradually reduced to 0.2–0.5 mA. The local anaesthetic solution (30 mL) was injected into all patients following negative aspiration, while maintaining the visible twitch of muscle groups in the forearm.

Patients in the clonidine group (Rc) received 20 mL 0.75% ropivacaine with 9 mL 0.9% saline and 1 mL clonidine (150 μg). The patients in the lignocaine group (Rl) received 20 mL 0.75% ropivacaine with 10 mL 2% lignocaine with adrenaline (1:200,000). Patients in the control group (R0) were given 20 mL 0.75% ropivacaine with 10 mL 0.9% saline. The final concentration of ropivacaine in the local anaesthetic solution was maintained at 0.5%.

Completion of injection was considered as time-0, and the sensory block was evaluated using the pin prick method (score 0: sharp pain; score 1: touch sensation only; score 2: no sensation) at 2-min intervals from time-0 until complete sensory block was achieved. Onset time of sensory block (OTSB) was defined as the time interval (in mins) from time-0 to the time the sensory block started to be detected (i.e. score = 1). Time for complete sensory block (TCSB) was the time interval (in mins) from time-0 to the time complete sensory block was achieved (i.e. score = 2). Total duration of sensory block (TDSB) was the time interval (in mins) from the time complete sensory block was achieved to the time the score was < 2. Total duration of analgesia (TDA) was taken as the time interval (in mins) between the time complete sensory block was achieved and the time of first analgesic request.

Motor block was evaluated using the Modified Bromage Scale (score 0: able to raise the extended arm at 90° for a full 2 s; score 1: able to flex the elbow and move the fingers, but unable to raise the extended arm; score 2: unable to flex the elbow, but able to move the fingers; score 3: unable to move the arm, elbow and fingers). Findings were recorded every 2 mins from time-0 until the complete loss of motor power. As with the sensory block, the onset time of motor block (OTMB) was defined as the time interval (in mins) from time-0 to the time the motor block started to be detected (i.e. score ≥ 1). Time for complete motor block (TCMB) was the time interval (in mins) from time-0 to the time complete motor block was achieved (score = 3). Total duration of motor block (TDMB) was the time interval (in mins) between the time complete motor block was achieved and the time when the score was < 3. Adequacy of the block was evaluated using the Allis clamp test.

Heart rate, arterial blood pressure (systolic, diastolic and mean measurements) and arterial oxygen saturation were recorded every 5 mins from time-0 until the completion of surgery, and thereafter every 30 mins until recovery. Hypotension, which was defined as a decrease in mean arterial pressure of more than 25% from baseline, was treated with ephedrine 5 mg IV bolus. Clinically significant bradycardia (< 45 bpm) was treated with IV atropine 0.6 mg. Mild postoperative pain was treated with six-hourly IV paracetamol 1 g, while fentanyl 100 μg was added for moderate-to-severe pain. All patients were monitored until complete regression of motor and sensory blocks; the time to first analgesic requirement and the total analgesic dose administered were noted.

Sedation was assessed every 5 mins from time-0 until the end of surgery, and every 30 mins thereafter, with the use of the Sedation Scale (score 0: awake and alert; 1: sedated, but responding to verbal stimulus; 2: sedated, but responding to mild physical stimulus; 3: sedated, but responding to moderate or strong physical stimulus; 5: not arousable). The sample size of the present study was determined according to the methodology described in previous studies. Results were presented as mean ± standard deviation for parametric data and as percentages for nonparametric data. Data was analysed using standard statistical test softwares such as Microsoft Office Excel 2007 (Microsoft, Redmond, WA, USA) and IBM SPSS Statistics version 19.0 (IBM Corp, Armonk, NY, USA). Kruskal-Wallis H test was used to compare the data among the three patient groups and unpaired t-test was used to determine significant differences between the groups. A p-value of < 0.05 was considered statistically significant and a p-value of < 0.001 was taken to be highly significant.

RESULTS

Among the patients in the Rc, Rl and R0 groups, no significant differences were observed with respect to the following factors: age, gender, height, weight and duration of surgery (Table I). No instances of failed blocks necessitating the administration of general anaesthesia were noted in any of the three patient groups.

The onset of sensory and motor blocks was earliest in the Rg group (OTSB 3.84 ± 0.80 mins; OTMB 5.76 ± 1.05 mins) followed by the Rl group (OTSB 5.84 ± 0.55 mins; OTMB 6.80 ± 1.00 mins); onset was significantly delayed in the R0 group (i.e. the control group; OTSB 8.72 ± 1.13 mins; OTMB 10.08 ± 0.90 mins) (p < 0.001). Similarly, sensory and motor blocks were achieved in a shorter duration of time in the Rg group (TCSB 9.52 ± 1.33 mins; TCMB 14.32 ± 0.94 mins) compared to the Rl group (TCSB 11.80 ± 1.28 mins; TCMB 17.12 ± 1.30 mins). The achievement of sensory and motor blocks was significantly delayed in the R0 group (TCSB 15.12 ± 1.42 mins; TCMB 19.52 ± 0.87 mins) (p < 0.001). The total durations of the sensory and motor blocks were significantly longer in the Rg group (TDSB 450.08 ± 54.45 mins;
DISCUSSION

In the present study, we found that the addition of 150 µg clonidine to 30 mL of 0.5% ropivacaine in the Rₒ group led to an earlier onset of sensory and motor blocks as well as an increased duration of analgesia, when compared to the use of 0.5% ropivacaine alone in the control group. The addition of 2% lignocaine with adrenaline to 0.5% ropivacaine in the Rₒ group led to the earliest onset of sensory and motor blocks among the three groups; however, this was without a significant improvement in the duration of analgesia. Our findings are in agreement with previous systematic reviews, which demonstrated that clonidine, when used as an adjuvant to local anaesthetics, improves anaesthesia and the analgesic duration of the local anaesthetic block. (11,12,20-22) Antinociception due to the action of α₂ receptors is well documented in clinical trials conducted on animals and humans. (23) The analgesic property of clonidine is attributed to the greater availability of these drugs at the vicinity of the nerve plexus; this may possibly account for the earlier onset of sensory and motor blocks seen in the Rₒ group, as compared to the Rₒ group. Studies have also reported that clonidine is effective in blocking the conduction of Aδ-fibres and C-fibres, and that it intensifies the conduction block of local anaesthetics. (15,16) Although a faster onset could have been achieved with the use of higher concentrations of ropivacaine, the concentration of ropivacaine was restricted to 0.5% in the present study because increasing concentrations of ropivacaine were not found to affect the duration of postoperative analgesia in previous studies. (27)

In the present study, the blocks were performed via the supraclavicular approach instead of the axillary approach, as the former was associated with faster onset (15) and many other advantages. (16) It should be noted that the brachial plexus is not surrounded by a ‘sheath’, instead it lies in a tissue plane closely surrounded by the clavicle, scapula, chest wall and humerus. (16) Elements of the brachial plexus (i.e. its trunks, divisions and cords) interlace and interlink at the supraclavicular level. As these elements are closer to each other at the supraclavicular level, the plexus is more compact at this level than at the axillary level. This means that, at the supraclavicular level, the connective tissues containing these nerves allow a more even spread of the drug solution, (18) making the use of 30-mL drug solutions sufficient and as effective as 40-mL drug solutions, which has been used in other studies for axillary blocks. (11,12,20,22)

Improvement in the duration of analgesia following the addition of clonidine to local anaesthetics has been reported in earlier studies. (11,12,20-22) Antinociception due to the action of adrenoceptors (e.g. clonidine on α2 receptors) is well documented in clinical trials conducted on animals and humans. (23) The analgesic property of clonidine is attributed...
to its greater affinity for the α2 receptors that are located on the brainstem nuclei, including those on the locus ceruleus and those on the neurons in the superficial laminae of the spinal cord and primaryafferent terminals. A decrease in the activity of these nuclei by α2 agonists supports thepossibility of analgesic action at the spinal and supraspinal sites.11,24 Although it is unlikely that the spinal and supraspinal effect is the mechanism that prolongs the analgesic effect of clonidine deposited at peripheral sites,13 a central analgesic effect that results from the systemic absorption of clonidine cannotbe excluded. Sia and Lepri demonstrated that clonidine does not provide postoperative analgesia when administered as the sole analgesic agent,25 suggesting thatsynergistic activity is more likely the mechanism for the prolonged analgesic duration observed with the use of clonidine. The direct action of clonidine, independent of its action on α2 receptor nerve fibre conduction, has been demonstrated in some studies,16,26,27 indicating another possible mechanism for its action as a local anaesthetic additive. Hutchsela et al have postulated that the effect of clonidine is local.28

The mechanism of action for the prolonged duration of analgesia observed when clonidine is used as an adjuvant to ropivacaine has been reported to be multifactorial and complex.19 While the synergistic effects of clonidine, or lignocaine, with ropivacaine were evident in the R C and R L conduction, has been demonstrated in some studies,16,26,27 elucidating the mechanism for prolongation of analgesia. In the clinical setting, the addition of clonidine to ropivacaine effects of added alpha-adrenergic agonists: comparison between clonidine and epinephrine. Can J Anaesth 1991; 38:870-5.

In the present study, the addition of 2% lignocaine with adrenaline to 0.5% ropivacaine was not found to improve the duration of analgesia, as ropivacaine is known to have intrinsic vasoconstrictive properties.13 The prolonged duration of the motor block in the R C group in our study is in agreement with the findings of a study by El Saied et al.11 We did not observe any adverse effects such as sedation, arterial hypotension or bradycardia in our patients. The dose of clonidine (150 μg) used appeared to have minimal or no adverse effects among our patients, similar to the findings of El Saied et al.11

To conclude, the addition of clonidine to ropivacaine for analgesia was found to be safe and effective in the present study. In the clinical setting, the addition of clonidine to ropivacaine during supraclavicular brachial plexus block would achieve early operating conditions and prolonged analgesia. In contrast, the addition of lignocaine to ropivacaine resulted only in earlier onset of sensory and motor blocks, without improvement in the duration of analgesia.

REFERENCES

5. Esteves S, Sá P, Figueiredo D, Pérez-Souto A. [Duration and quality of postoperative analgesia after brachial plexus block for shoulder surgery: ropivacaine 0.5% versus ropivacaine 0.5% plus clonidine]. Rev Esp Anestesiol Reanim 2002; 49:302-5, Spanish.
17. Casisi A, Fanelli G, Aldgeheiri G, Berti M, Colnaghi E, Cedrati V. Intercalaneal brachial plexus anesthesia with 0.5%, 0.75% or 1% ropivacaine: a double-blind comparison with 2% mepivacaine. Br J Anaesth 1999; 83:872-5.